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In mathematical models of flow through porous media, the coefficients typically
exhibit severe variations in two or more significantly different length scales. Con-
sequently, the numerical treatment of these problems relieshomagenizatiomr
upscalingprocedure to define an approximate coarse-scale problem that adequately
captures the influence of the fine-scale structure. Inherent in such a procedure is
a compromise between its computational cost and the accuracy of the resulting
coarse-scale solution. Although techniques that balance the conflicting demands of
accuracy and efficiency exist for a few specific classes of fine-scale structure (e.g.,
fine-scale periodic), this is not the case in general. In this paper we propose a new,
efficient, numerical approach for themogenizationf the permeability in models of
single-phase saturated flow. Our approach is motivated by the observation that mul-
tiple length scales are captured automatically by robust multilevel iterative solvers,
such as Dendy’black box multigrid In particular, the operator-induced variational
coarsening in black box multigrid produces coarse-grid operators that capture the
essential coarse-scale influence of the medium’s fine-scale structure. We derive an
explicit local, cell-based, approximate expression for the symmetrsic2homog-
enized permeability tensor that is defined implicitly by the black box coarse-grid
operator. The effectiveness of this black box multigrid numerical homogenization
method is demonstrated through numerical exampl@s.998 Academic Press

Key Words:porous media; permeability; numerical analysis; homogenization;
multigrid.

1. INTRODUCTION

The mathematical modeling of flow in porous media plays a fundamental role in
forecasting of petroleum reservoir performance, groundwater supply, and subsurface
taminant flow. A critical underlying problem in the numerical treatment of these model:
the multiscale structure of heterogeneous geological formations. For example, the le
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MULTIGRID HOMOGENIZATION 81

scales observed in sedimentary laminae range from the millimeter scale upward, whil
simulation domain may be on the order of hundreds of meters [1]. As a result, a n
fine-scale discretization of the mathematical model is computationally intractable, yet
fine-scale variations of the model's parameters (e.g., structure and orientation of lami
significantly affect the coarse-scale properties of the solution (e.g., average flow ra
Thus, an accurate and efficient numerical treatment of these problems relié®omoge-
nizationor upscalingprocedure to define an approximate mathematical model in which:
effectiveproperties of the medium vary on a coarse scale suitable for efficient computa
while preserving certain coarse-scale properties of the fine-scale solution.

The inherent complexity of the homogenization process stems from the competing nu
ical objectives of accuracy and efficiency. This competition, and the typical comprom
thatresult, are clearly demonstrated in the numerical treatment of the model for single-p
saturated flow that is given by [2],

u=—-K(rVvp, (1a)
V-u=Q(), (1b)

where Eq. (1a) defines the Darcy veloaitgnd Eq. (1b) is a mass balance relation governir
the pressurep and the source-sink ter®@(r). The permeability/C(r) (which may be
interpreted as the mobility, hydraulic conductivity, or diffusivity) is, in general, highl
variable over a significant range of length scales.

The homogenization of the diffusion operator, and hence the permeability in Eq. (1),
been studied extensively over the past 50 years [3-5]. A review of this literature for sin
phase saturated flow is given by Wen andn@&z-Herandez [6]. Unfortunately, existing
homogenization methods balance the numerical objectives of accuracy and efficiency
over a small class of fine-scale structures. Consequently, the increasing use of geostat
techniques to infer physically meaningful fine-scale realizations of heterogeneous ge
gical structure from sparse and inherently multiscale measurement data [7, 8] has gene
a renewed interest in developing accurate and computationally efficient homogeniz:
procedures. In this study we make the common assumption that the fine-scale permes
tensor is constant over each fine-scale @efl,) = K; j forallr € F; j. The objective of a
homogenization procedure for Eq. (1) is to define an equivalent coarse-scale permea
tensor that is constant over each coarse-scale/cél), = IELJ- forallr € G j, and that
preserves certain coarse-scale properties of the fine-scale solution (see Fig. 1).

The majority of existing homogenization methods of upscaling involve local fine-sc
computations and may be classified as eiddtitiveor Laplacian Additive methods as-
sume that the equivalent coarse-scale permeability may be defined as an explicit fun
of the fine-scale permeability. In fact, in one dimensibiris given by the harmonic mean
[3, 5]. Although this specific result does not extend to the multidimensional case, there
multidimensional heterogeneous structures for which additive upscaling is exact. For e
ple, in two dimensions, if the fine-scale permeability is given by a log-normal distributi
thenk is equal to the geometric mean [9]. These isolated theoretical results in combina
with the low computational cost of additive methods have enticed a number of researc
to consider their widespread application (e.g., [10-13]). It was concluded that, in gen
there is no single rudimentary average that defines the effactivepermeability [6].

This unfortunate result is a consequence of the interaction of different length scale
particular, a fine-scale isotropic permeability may give rise to a coarse-scale anisotr
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FIG. 1. The permeability tensor of a porous medium is specified on each fine-scalg celhd must be
upscaled or homogenized over each coarse-scale or computatior@|jcell

flow [1, 14, 15]. For example, consider an essentially one-dimensional structure in
dimensions, such as a layered medium. If the layers are aligned with the coordinate
then the flow perpendicular to the layers encounters an effective permefbjlimat is
given by the harmonic mean; however, flow that is parallel with the layers encounter:
effective permeabilityeﬂ that is given by the arithmetic mean. These means may diff
by orders of magnitude, and hence, in this case the effective anisotropic permeability
diagonal tensor. Moreover, if the layered structure were not aligned with the coordinate
the effective permeability would be a full tensor. At present, no additive homogenizat
method is able to produce a full coarse-scale permeability tensor from a fine-scale isoti
permeability; yet ignoring the potential coarse-scale anisotropy may lead to signific
errors in the simulated flows.

In contrast, most Laplacian homogenization methods are capable of constructing
coarse-scale permeability tensors, even from an isotropic fine-scale permeability. T
methods use the solution of local fine-scale problems (i.e., solve Eq. (1) over a coz
scale cellC; ;) to infer the coarse-scale permeability tensAio,rj of the medium. Ideally,
the boundary conditions for these local fine-scale problems would be consistent with
global fine-scale solution, but the global fine-scale solution is unknown. Conseque
artificial internal boundary conditions must be introduced, possibly corrupting the glo
coarse-scale behavior of the solution. In an effort to minimize the influence of the artifi
boundary conditions @hez-Herahdez [16] defined the local fine-scale problems over
larger domain composed of the computational €l] and its surrounding skin (i.e., half
the annulus of neighboring coarse-scale cells). Although this method was found to per
well for a variety of heterogeneous formations [17], it does not explicitly enforce the coat
scale permeability tensor to be symmetric and positive definite [14], and hence, it c
generate nonphysical flows.

Although the physical approach of Laplacian methods may seem ad hoc, in gen
they may be viewed as approximations of a rigorous two-scale asymptotic analysis.
analysis, which has been presented by a number of authors [3, 4, 18], and for whic
excellent introduction is given by Holmes [19], is asymptotically exact for fine-scale pe
odic and nearly periodic (i.e., nonuniformly periodic) problems. Specifically, for fine-sc
periodic media the homogenized permeability is a constant, symmetric, positive definite
sor that may be expressed in terms of the solution of a single, local fine-scale problem
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periodic boundary conditions. Bourgat [20] conducted a numerical study of this asympt
analysis, demonstrating that not only was the exact coarse-scale permeability tensor
metric positive definite, but also that a dense tensor may result from a fine-scale isott
heterogeneity.

However, this asymptotic analysis is strictly valid only for media in which two distin
length scales exist. Although this is true for some porous media (e.g., some sedime
laminae), it is not true in general. Durlofsky [14] investigated both the assumption ¢
periodic fine-scale structure and the importance of two distinct length scales in nume
simulations of flow through two-scale and multiscale heterogeneous structures. His re
indicate that this approach provides an excellent coarse-scale model of a porous me
provided that the computational scale is much larger than the fine-scale. Thus, the
serious drawback of this approach and of Laplacian methods in general, is the computat
cost associated with the solution of local fine-scale flow problems on each computati
cell of the global domain.

One method that attempts to bridge the gap between the low computational cost o
ditive methods and the superior accuracy of Laplacian methods is based on a num
multilevel renormalizationapproach [21]. Specifically, renormalization uses the analo
of resistor networks to approximate an effective diagonal permeability tensor for 2 2
block of fine-scale cells. Applying this technique recursively, a finite number of steps
sults in an equivalent diagonal permeability tensor for each coarse-scdlg celhus, the
computational cost is comparable to additive methods, and moreover, the method autc
ically handles anisotropies that are aligned with the coordinate axes. However, ther
two significant weaknesses. First, the resistor analogy implicitly defines artificial bounc
conditions that impose one-dimensional flows in each of the coordinate directions. Ti
artificial boundary conditions are applied at each step in the recursion and therefore
generate significant errors in the homogenized permeability [22]. Second, the homogel
permeability is at most a diagonal tensor, and hence, for cases in which the principle
of diffusion are not aligned with the coordinate axes, the errors may be severe.

The objective of this research is to create new, computationally efficient numer
homogenization techniques that capture the essential features of the rigorous asym
analysis (i.e., symmetric positive definite tensor) and therefore lead to significant impre
ments in the numerical modeling of multiscale problems in general. To this end, we I
the observation that equivalent multiscale issues arise in the development of multilev
erative solvers. In particular, the efficiency of a multigrid method is tightly coupled to b
the coarse-grid operator’s approximation of the fine-grid operator’s coarse-scale influ
and the ability of the intergrid transfer operators to approximate the interaction of the v
ous scales. Early work in multigrid methods considered using simple averages, such &
arithmetic and harmonic average, to define the coarse-grid operators, in conjunction
standard intergrid transfer operators (i.e., full weight restriction, bilinear interpolation). I
surprisingly, this approach was fragile, yielding convergence rates that were strongly
pendent on the fine-scale structure and variability of the permeability [23]. Consider:
research in this area eventually led to robust and efficient multigrid solvers, such as Del
black box multigrid [24, 25], strongly suggesting that the corresponding coarse-grid 0|
ators provide an excellent approximation of the homogenized operators.

Therefore, the objective of a multigrid numerical homogenization algorithm is to obtair
approximation of the homogenized permeability tensor directly from the operator-indu
variationally coarsened coarse-grid operator, and most importantly, without solving a si
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elliptic problem. Specifically, consider successively applying operator-induced variatic
coarsening to a fine-scale discretization of Eq. (1) until a coarse-scale suitable for nume
simulation is reached. On this simulation-scale an approximation of the spatially depen
homogenized permeability tensor may be obtained directly from the coarse-grid opera
This approximate multigrid homogenized permeabill€§™? (r), which is piecewise con-
stant on the simulation-scale cells, may be used to define the simulation-scale (coarse-
model.

In Section 2.1 we review the motivation of variational coarsening and discussits influer
role (Section 2.2) in theperator-inducedvariational coarsening of black box multigrid.
In Section 2.3 we derive the key result: a local, explicit expression that definesxte 2
cell-based permeability tensor in terms of a given black box coarse-grid operator.
homogenization algorithms that are based on this local result are presented in Se
3 for both the periodic and general case. Recently, Knapek [26, 27] addressed multi
homogenization in an alternative manner and we comment on his approach in Section G
numerical study of the periodic case is presented in Section 4 that highlights the strengt
the new black box multigrid homogenization method. Specifically, in Section 4.1, we vel
that this technique is exact for problems in which the permeability has an essentially «
dimensional structure that is aligned with the coordinate axes. In this sense, it is compa
to modern renormalization. But in addition (Section 4.2), we demonstrate that this techn
provides an excellent approximation of the homogenized permeability tensors that ap
in Bourgat's numerical study of truly two-dimensional problems, including the computati
of a dense tensor that arises from a fine-scale isotropic problem.

2. HOMOGENIZATION AND BLACK BOX MULTIGRID

To motivate the derivation of our key result, Theorem 2.1, we first review variatiot
coarsening and then discuss the operator-induced variational coarsening that is emp
in black box multigrid. We assume that the reader is familiar with the basic elements |
multigrid iterative algorithm, which are introduced in [28] and are covered in detail by
number of researchers (e.g., [29, 30]).

2.1. Variational Coarsening

A crucial aspect of any multigrid algorithm is the definition of the coarse grid operatc
Ly = discrete operatorongrik k=1,2,..., (humber of grids— 1
and the intergrid transfer operators,

Ilf_l = interpolation operator grid (k — 1) — grid k
Jlf‘l = restriction operatqgr grid k — grid (k — 1).

Variational coarsening offers one means of definliRg, in terms ofLy, J,f‘l, and ||i(71-
The development is given by Brandt [31] and follows naturally upon the restatement of
linear system,

Lkp* = Qx, @)
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as an equivalent minimization problem. Specifically, becaugsés symmetric positive
definite we have

. 1
p* = min {@(«p): §¢TLk¢—Ql¢}. ®)

PeRNM

If ¥ is an approximate solution of Eq. (3), obtained by sufficiently many relaxations
Eq. (2), the associated errdf = pX — ¢¥ is smooth. Therefore, the objective is to use .
coarse-grid approximation of the fine-grid erref,= 1% ,e-1. This is accomplished by
writing

K Kk, k k-1
PP =¢" + 1€,

suggesting that we choosk& ! to minimize® (¢ + X ;€<1). In this case, the equivalent
linear system may be written in the form

Lic1€7h = (FT L) €7 = 3T (Qu = Lig®) = Qe @
Thus, if 31 = (1X )*, then
Lica = () "Lkl ()

is symmetric. Equation (5) is typically referred to as the variational definition of the coat
grid operator_y_1.

It is common practice to employ a bilinear finite element basis for both the test :
trial spaces in problems of linear diffusion; therefore, bilinear interpolation seems n:
ral for IX_;. However, bilinear interpolation does not yield an efficient multigrid solve
for many practical applications in which the permeability (or components of the perr
ability tensor) varies discontinuously by orders of magnitude. In these cases one |
employ an alternative interpolation scheme, such aspleeator-induced interpolatioof
Dendy [24].

2.2. The Stencil and Coarse-Grid Operators

Operator-induced variational coarsening was introduced in [23] as a robust mear
defining a complete set of coarse-grid and intergrid transfer operators based solel
the fine-grid discrete operatdsy,. In essence, operator-induced coarsening is variatior
coarsening with the interpolation operati,,, defined in terms of the discrete operaltqr
Thus, we first introduce the compass-based notation of Fig. 2a as a means of conven
describing a 9-point stencil centered at a pointjJ on grid k. However, because the
discrete operator is symmetric, the mesh itself may be viewed as an undirected g
(missing diagonal edges for a 9-point stencil, complete for the standard 5-point stenc
the corresponding matrix. Thus, itis only necessary to store five stencil weights for a 9-f
stencil and three for a 5-point. Dendy [24] chose to employ a cell-based definition of tf
five weights (Fig. 3), so that the 9-point stencil takes the form shown in Fig. 2b. Note 1
this black box multigrid code explicitly includes the negative sign that is generally pres
in the eight neighboring stencil weights.
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FIG.2. (a) Acompass-based definition of an arbitrary 9-point stencil. (b) A 9-point symmetric stencil defir
using a cell-based nomenclature.

To define the interpolation operator, we first note that coarse-grid points that are conta
in the fine grid are simply interpolated by injection:

(Ill((—lw - ) I//|c jc*

Another special case is horizontal lines of the coarse grid embedded in the fine gric
this case, the primary objective is to perform piecewise linear interpolation in a mar
that enforces the continuity of the normal flux and yet only uses information from |
fine-grid stencil. Specifically, it may be shown (see Appendix B) that collapsing the ste
components vertically generates the interpolation

_ W(k> W (k) Ok
(Ilf—ll/fk 1)“_ = ( I/flc Jc+SQ+1jl/f|c+ljc)/S ’ (6)
where the interpolation weights,

AWK W(k SW(k N W(k
sq; =sq“+sg"+sqity,

Soo<k> s O(k) qufk) sg

j+1

approximate this continuity condition.
An analogous treatment is employed for the vertical lines embedded in the fine ¢
Finally, all that remains are fine-grid points that are centered in coarse-grid cells. In
case, the fine-grid stencil is readily inverted, because all eight neighboring corrections

Cif) (i) (i}

'S O,Y,V S 03

-so3 -So

-80;

(a) (b) (©

FIG. 3. The cell-based unique stencil weight definitions adopted in [24].
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FIG. 4. Thelocalflux analysis approximates: (a) tkecomponent of the flux and (b) thecomponent of the
flux, through the cell using the stencil weights.

already been evaluated:
k k—1 _ W(K) k k—1 W(K) k k—1
(¥ ) ipn o = 189G (¥ ™) + S (¥ )i a
S(K) k k—1 S(K) k k—1
+ Sq+l,j+1(|k—ll/f )i+l,j + SQ+Lj+2(|k—1‘/f )i+1,j+2
SW(K) - S W(k) -
+ Sq+1,j+1(‘ﬁk 1)ic,jc +S +2,j+2(1ﬂk l)ic+1,jc+1

N W(k — N W(k — Ok
+ SN 1  Dicjer + SQYS 1 (WK 1)ic+1,ic}/SQ+(1,)j+(17-

Using this definition of the interpolation operatdy, ;, in the variational definition of the
coarse-grid operatot,x_1, EQ. (5), yields a robust multigrid algorithm that requires onl
the fine-grid stencil.

2.3. Extracting the Permeability Tensor

The objective of black box multigrid homogenization is to compute a constan?2
permeability tensor for each cell of the desired computational grid (i.e., a coarse-scale ¢
However, the operator-induced coarsening of Dendy’s [24] black box multigrid produces
coarse-grid discrete operator and not the permeability tensor. Thus, the underlying obje
is to develop docaltechnique that extracts the cell-based permeability tensor from a coa
grid stencil. To accomplish this objective we analyze the flux passing through the c
centered coordinate axes shown in Fig. 4. This approach naturally relates the permea
tensor to the stencil weights because the stencil itself may be viewed as a superpositi
fluxes. Specifically, we state the following theorem that we prove in Appendix A.

THEOREM2.1. Consider the primal conforming bilinear finite element discretization «
Eq.(1)with X(x, y) smooth' and subject to periodic boundary conditions on a rectangule

1Quadrature may be used to evaluate the elements of the stiffness matrix provided that it is sufficient!
curate. If we assume a smooth permeability tensor, then the quadrature must integrate cubics exactly. A
tively, a piecewise constant sampling of the smooth permeability teisark(x,y) = K. 1 .1 for (x,y)

o . : i+3.0+3
€ QH%,H%) may be used, in which case only quadratics need to be integrated exactly.
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domaing. In addition assume a tensor-product grid with a constant grid spacing in ea
coordinate direction that is denoted Ifx, hy). A second-order approximation of the
permeability tensolCi g 11 = K(Xit1, Yj+1) is given by

. {S +SNE+S+11 (SNE +1J)
Ki+%,j+% = NE NE ) (8)
(S +1 J) {S + S +1J
where we have defined
— 1
S =555+ 5.
1

S = 5(8 + )

For a constant permeability tensdar.e., (X, y) = Kit1,j+1 V(X y) € Q), Eq. (8)is an
exact expression.

In the case of fine-scale periodic structures, it is well known that a two-scale asympt
analysis (i.e., denote the slow global saadeand the fastlocal scaje= r /¢, wherec > Oisa
small parameter) to an expression for the homogenized permefﬂﬁﬁ){& 4]. Moreover,
it has been shown tha&t@ is a constant and symmetric positive definite tensor that
not, in general, an explicit function aff(p), but depends on specific solutions of the loce
fine-scale problem

—V, [K(p) V9] =0, €)

for p € F and with¢ periodic onF.

Therefore to use operator-induced variational coarsening to perform an approxir
numerical multigrid homogenization of a fine-scale periodic permeability we must relate
fine-scale discretization of Eq. (9), the results of the coarsening procedure, and Theorer
These relations are summarized in the following theorem.

THEOREM2.2. Consider &-point vertex-based consistent discretization of @jjover
Qn (the n-times periodic extension of F for integer8). Furthermore assume a tensor-
product grid that has a constant grid spacing in each coordinate direction denoted
(hx, hy). Applying operator-induced variational coarsening until the stencil at each poi
on the coarse-grid is identical leads to a coarse-grid operator that is second-order co
istent with a constant coefficient elliptic PDE

v, [K®PV,¢] =0, (10)

with ¢ periodic on2,,. Moreover the black box multigrid homogenized permeabiﬁlﬁ?b)
is given by Eq(8).

Proof. Itis straightforward to show that the important properties of the fine-grid sten
namely, that it is conservative (i.e., zero sum) and symmetric, are preserved under ope
induced variational coarsening. Furthermore, each point has an identical stencil, there
periodicity implies the discretization is consistent with some constant-coefficient PI
Thus, the coarse-scale solution is smooth and moreover, its Taylor series expansion
any vertex readily yields Eq. (10) with®? given by Eq. (8). [
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Although we focus on fine-scale periodic media in this preliminary investigation, 1
ultimate objective is the efficient numerical homogenization of general fine-scale per
ability over a global domain subject to general boundary conditions. A two-scale asympt
analysis has been applied to nonuniformly periodic structuresKi(e, o) is a function of
both the slow and fast scales) revealing that, in general, the homogenized permeability
vary on the slow scale [3, 4]. The unfortunate consequence of this spatial depender
that to characterize the homogenized permeability a continuum of local fine-scale ell
problems must be solved.

We are optimistic that the extension of multigrid numerical homogenization to gene
fine-scale structures will provide an efficient and accurate numerical approximation of
spatially dependenthomogenized permeability tensor. The key components of this exte
are summarized in the following conjecture.

Conjecture2.1. Consider the conforming bilinear finite element stencil specified
Theorem 2.1. Applying operator-induced variational coarsening until the desired coe
grid is reached leads to a coarse-grid operator that is consistent with an elliptic PDE o
form

WhereIE(x, Y) and@(x, y) are piecewise constatfit.e., I%(x, y) = I%H%,H% Y(X,Y)
€ Qi14,j+3)- Oninterior cells an approximation of the piecewise homogenized permeabi
tensor is given by Eq. (8).

Thus, the extension to nonperiodic problems requires a consistency relation such a
of Conjecture 2.1, as well as the extension of Theorem 2.1 to incorporate nonperi
boundary conditions.

3. THE MULTIGRID HOMOGENIZATION ALGORITHM

3.1. The Periodic Case

To motivate the black box multigrid homogenization algorithm for the periodic case,
briefly discuss the relevant grid configuration issues. Specifically, the implementatio
black box multigrid [25], and hence, the new homogenization code that was derived f
it, was simplified by the use of fictitious points. Thus, if we consider the physical dom
[X1, V1] x [XL+1, Ym+1], periodicity requires

U(Xg, ¥) = U(XL41, Y) VY € (Y1, Ym+1)

ux, y1) = u(X, ym+1) VX € (X1, XL41)-

Consequently, a typicdl x M computational grid (Fig. 5) has thep andright edges
composed of fictitious points. Furthermore, the smallest plausible gricki8.3Thus, the
homogenization of a representative cell may be accomplished by choosing the phy
domain to be a 3« 3 tiling of the representative cell so that the coarsest grid is col
posed of a 3 3 tiling of homogenized cells. For example, consider the tiling shown
Fig. 6a on which a 12 12 computational mesh is superimposed. After two coarsenings,
computational mesh is only-33 and the domain may be viewed as a tiling of homogenize
cells (Fig. 6b). Note that the fictitious cells are displayed in lighter shades of gray.
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FIG.5. Atypical L x M computational mesh is shown for periodic boundary conditions with the point-wi:
unknowns indicated by shaded circles. The entiret 2) x (M + 2) mesh employed bplack box multigrid
includes the fictitious points depicted as shaded squares.

This procedure is ideal, provided that the fine-scale structure of the problem may
represented exactly on a- 21 x 3. 2“1 mesh. However, if such a representation i
not possible, using an exact representation on the finest grid becomes problemati
clarify this point, consider vertical stripes on the representative(cell [0, 1] x [0, 1])

(a) (b)

FIG. 6. (a) 12x 12 computational mesh is superimposed on-a3tiling of representative cells. (b)3 3
computational mesh on the coarsest grid. The domain is now composed of homogenized cells.
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(a) (b)

FIG. 7. (a) A fine-grid (9x 9) representation of vertical stripes with, = 1/3. (b) After one coarsening
a 5x 5 grid remains that is no longer consistent with the 3 homogenized grid. In both cases the solid dot:
represent grid points and the solid squares represent fictitious points.

defined by

KL, 0<X < ux

KX, y) = )
(*.) {ICR, Ux <X <1

which, if ux = 1/3, may be represented exactly on the 9 fine grid shown in Fig. 7a.
The first coarsening yields a6 5 mesh, destroying the internal periodicity (Fig. 7b).

A number of treatments may be proposed to circumvent this problem approximat
however, because our objective is to investigate the potential of the multigrid homoger
tion procedure, we restrict the fine-grid representation @&3" x 3- 2~ uniform meshes
and employ a cell-centered, point-wise samplingfof, y). This restriction implies that the
black box multigrid homogenization of fine-grid structures that are not represented exe
on this mesh should be defined by the limit of the sequence of diffusion tensors that :
as the fine-scale mesh is refined (i.e., increak)ngf is anticipated that this sequence will
be first-order convergent, and this claim is demonstrated in Section 4.1.2. We summ
this homogenization procedure in the following algorithm.

ALGORITHM 3.1. Black Box Multigrid Homogenization of Periodic Problems.

1. Construct the conforming bilinear FEM stencil foBax 3 tiling of the representative
cellon a3- 2k-1 x 3. 21 yniform fine grid.

2. Construct the coarse-grid operators with operator induced coarsej@gj

. Based on Theore®.2, computeC®? on the3 x 3 grid (i.e., the coarsest grijl

4. Is the fine-scale structure of the representative cell captured adequately on the
grid (i.e., either exactly or evidenced by satisfactory convergen&“ﬁ’f)?
YES the black box multigrid homogenized diffusion tensok®?
NOQ: increase k and gota.

w

An alternative vertex-based approach is consideredin [26, 27] which invext8 sy&stem
that is defined over a group of four cells. These methods result in equivalent homoger
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permeability tensors if the stencil is spatially constant, in which case it is natural to ass
that the four neighboring cells will have identical properties. However, in the general c
(Section 3.2), this assumption may be too restrictive, and therefore, we feel that a |
technique is preferable.

3.2. The General Case

The objectiveinthe general case is somewhat different. Here itis assumed that a multi
diffusion problem s readily defined on a fine scale but that practical computations are lim
to a much coarser scale. Thus, we first note that Conjecture 2.1 applies on all interior
Moreover, the extension of Theorem 2.1 to the case of homogeneous Neumann boul
conditions is straightforward because these boundary conditions are the natural ones f
variational formulation. Unfortunately, Dirichlet and mixed boundary conditions requi
careful attention. These extensions are beyond the scope of this preliminary investige
hence, we propose the following algorithm for the general case but do not evaluat
potential.

ALGORITHM 3.2. Black Box Multigrid Homogenization of General Problems.

1. Construct the conforming bilinear FEM stencil on a fine grid whose spacing cor
sponds to the fine scale of the modeling problem
2. Construct the coarse-grid operators with operator-induced coarsefiidyyso that
the coarsest grid is the desired computational grid.
3. (a) Based on Conjectur.1,use Eq.(8) to computd@
on the coarsest grid.
(b) Based onthe necessary extension of both Conje2tliend Theoren2.1compute

/Efgbf i1 for all boundary cells on the coarsest grid.
2’ 2

(bb)

i+1,j+1 for all interior cells

4. Storek?) |, for future use.

4. NUMERICAL EXAMPLES

To explore the potential of the black box homogenization, we present numerical res
for several model problems that may be divided into two subsections. The first subse«
consists of the homogenization of a constant diffusivity (i.e., a fixed-point problem), v
ious stripes (i.e., essentially one-dimensional problems), and the infamous checkerk
problem. The second subsection discusses the examples of Bourgat [20] that focus ¢
dependence of the permeability tensor on the shape and diffusivity of an interior inho
geneity,; ¢ Q = {[0, 1] x [0, 1]}.

4.1. A Progressive Test Suite
4.1.1. Constant Tensor

A domain having a constant permeability tensor may be viewed as the ultimate rest
a homogenization procedure for which no further homogenization is desired or poss
Therefore, a constant permeability tensor must be a fixed point of the homogenize
operator,

Kisgi+z = Hon(KX, ¥) = Hob(Kity,j+1)-
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In this case we know that the stencil is preserved under variational coarsening and
by Theorem 2.1@%7”% given by Eq. (8), is an exact expression. Therefore, a const
permeability tensor is a fixed point of the black box homogenization operator. This cl:
was also verified numerically with the black box code.

4.1.2. Stripes

Analytic homogenization results exist in one dimension making essentially one-dime
onal problems (i.e., problems in which the diffusive process is completely decoupted
andy), the first logical step beyond the simple constant permeability tensor. Specifically,
striped patterns shown in Figs. 8a and 8b are two-dimensional problems in which the ma
structure is only one-dimensional. If in addition, the following diagonal permeability ten:
is defined,

{“l 0] V(X.y) €
0 a2
KX, y) = ,

p1 O
[0 ,BJ Y(X,y) € Q1

then the permeability process is completely decouplexiamdy. Therefore, based on a
one-dimensional analysis, the homogenized permeability tensor for the vertical stripe
Fig. 8a may be written

- a1f1 0
Ie _ (I-px)artuxpr (12)
0 pxoz + (1 — ux) B2
% y
1
Qp
Qg
0 0
0 X 0 1 x
(a) (b)

FIG. 8. \ertical and horizontal stripes.
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TABLE 1
A Sequence of Homogenized Permeability Tensors Obtained with Progressively Finer
Uniform Grids for Vertical Stripes with py =1/3, a1 =, =3, and3; =3, =50

Fine Grid Ko o0 — o0 Ko |ICW-V> — Ky
12x 12 10.1695 2.13379 38.2500 3.9167
24 x 24 7.27273 0.76298 32.3750 1.9583
48 x 48 8.48057 0.44486 35.3125 0.9792
96 x 96 7.88034 0.20537 33.8437 0.4896

192 x 192 8.14249 0.10678 34.5781 0.2448

384 x 384 7.98337 0.05234 34.2109 0.1224

768 x 768 8.06215 0.02644 34.3945 0.0612

while for the horizontal stripes of Fig. 8b it becomes

~ nyan + 1- Hy)B1 0

K= . ot . (13)
(I—py)oa+iay B2

Recalling that operator-induced interpolation is constructed in terms of transverse ¢
aged stencil coefficients to ensure continuity of the normal current, we expect to solve t
essentially one-dimensional problems exactly. Indeed this expectation is correct, prov
that

* oy =iz (14)

Mx =12
wherei, k are positive integers arid< k. This choice ofux anduy ensures that a uniform
fine grid exists that not only represents the stripes exactly but also when coarsened us
same coarse mesh in each homogenized cell (see Section 3.1). In the case of stripe
violate Eq. (14), we define the homogenized tensor as the limit of the sequence of mult
homogenized tensors that is generated by considering succes$sigefine-grid problems.

For example, consider vertical stripes wjith=1/3, ¢y = a2 =3, andg; = 8, =50 for
which the corresponding sequence of black box multigrid homogenized tensors is
sented in Table 1. The exact homogenized permeability tensor is readily obtained |
Eq. (12),

K= (15)

o 1® 0  343333|"

z 0]=[8.0357 0 ]

and was used to compute the errors that appear in Table 1. It is apparent from the error
this procedure is first-order convergent.

4.1.3. Checkerboard

The checkerboard (Fig. 9) is one possible representation of a granular mixture such as
with Qg denoting the grains of sand afij denoting the intergranular space. Although thi
is a truly two-dimensional problem, the exact solution is well known for isotropic diagor
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0 1

FIG. 9. The checkerboard.

tensors [4]. Specifically, withiC(x, y) defined by

a-la Y(X,Y) € Qo,

KX, y) =
ooy {ﬂ"z V(X,y) € Qu,

wherel; is the 2x 2 identity matrix. The homogenized permeability tensor is

K=+aB-l,

A computation to evaluate the black box homogenized permeability tensor was perfor
with the unfortunate result:

- 1
KO = S@+B) -z

Itis not difficult to trace this error to its source, although itis likely nontrivial to correct i
In particular, the interpolation operator is obtained by first averaging the stencil inxetther
y to define the required one-dimensional interpolation problems. This averaging necess
defines an interpolation operator consistent with a medium having constant diffusivity gi
by the arithmetic mean efandB. Moreover, takingg = 1/« reveals that the corresponding
error is unbounded. At this time, it is not known how to alleviate this problem by alteri
the operator-induced interpolation in a manner that still preserves the 9-point, symme
conservative stencils under variational coarsening.

4.2. Bourgat's Examples
4.2.1. Shape Dependence

An evaluation of the geometric dependence of the homogenized permeability tens
demonstrated with three basic shapes: square, disk, and lozenge (i.e., rotated square),
are shown in Figs. 10a—c. The permeability tensor of these representative cells is de

by

1.1 V(X y) e Qo

Ry = {10. l, VX, y) e
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Qp

Qy

In all cases, the area @t; is 1/4. Moreover, symmetry ensures that the homogenize
permeability tensor will also be a scalar multiple of the identity. This property was v
ified to hold for our numerical algorithm, and the results are displayed in Table 2.
comparison of the results that we obtained with a %6868 fine grid and those found
in [20] is summarized in Table 3, where percentage differences, relative to the sq
inhomogeneity, are also included. These results demonstrate that the relative sens
of black boxhomogenization is similar to the rigorous treatment of Bourgat. In a c
rect comparison the black box results consistently overestimate the asymptotic valu
approximately 2—3%. This result is quite impressive when a commonly employed al
native such as the two-dimensional harmonic average not only underestimates the as
totic value by approximately 17% but also is independent of the shape of the inte

(a) (b) (c)

FIG. 10. Three inhomogeneities with an area of 1/4, but different shapes.

inhomogeneity.

4.2.2. Dependence on the Relative Diffusivity

In this example, we consider a square inhomogeneity (Fig. 11) defined by

1.1, VX y) e

’C(X’y):{)\.|2 VX, y) € Qp

TABLE 2
A Sequence of Homogenized Permeability Tensors Obtained with Progres-
sively Finer Meshes for the Three Representative Cells Shown in Fig. 10

Fine grid Square Disk Lozenge
12x 12 1.5979 1.5979 1.5979
24 x 24 1.5979 1.5979 1.4182
48 x 48 1.5979 1.5495 1.5629
96 x 96 1.5979 1.5797 1.6354
192x 192 1.5979 1.5676 1.6015
384 x 384 1.5979 1.5673 1.6175

768 x 768 1.5979 1.5631 1.6079
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TABLE 3
Shape Dependence of the Diffusivity, Relative to the Square (i.e., the Per-
centage of Relative Difference—%RD) Is Presented for the Results of Bourgat
[20] and Black Box Homogenization

Shape Bourgat % RD Black box % RD
Square 1.548 — 1.598 —
Disk 1.516 —2.06 1.563 —2.19
Lozenge 1.573 +1.69 1.608 +0.63

to evaluate the dependence of the homogenized permeability tensor on the pakame
Symmetry once again guarantees that the homogenized permeability tensor is also a
multiple of the identity. Unfortunately, the structure@f cannot be described exactly on
a uniform 3- 2k-1 x 3. 21 grid, wherek is a positive integer. As a result, for eachve
obtain a convergent sequence of permeability tensors. A sample computation=witl®

is summarized in Table 4. For purposes of comparison, we use the results of the fines
displayed in Fig. 12. Also appearing in Fig. 12 are the results of Bourgat [20] as well as
commonly used means,

1 rl
cem — / / K(x,y)dxdy= }(/\ +8) - Iz,
0 Jo 9

gm _ /l/l[IC(x pltdxdy] = %,
o Jo 7 (1+8))

We note the excellent agreement of the black box homogenized permeability coeffic
with the asymptotic results over eight orders of magnitude. itWe also observe that the
catastrophic failure of the harmonic meamas> 0% is in contrast with an overestimation
of approximately 10% in the arithmetic mean. Moreover, as +oo, the harmonic mean
yields approximately a 10% underestimation, while the arithmetic mean grows linee
displaying an arbitrarily large error.

173

Qg

0 173 273 1

FIG. 11. A square inhomogeneity with diffusivity and an area of 1/9.
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TABLE 4
A Sequence of Homogenized Permeability Ten-
sors Obtained with Progressively Finer Meshes for
the Inhomogeneity Shown in Fig. 11 with\ = 10

Fine grid Koo = K
12x 12 1.5979
24 x 24 1.1243
48 x 48 1.2897
96 x 96 1.1934
192x 192 1.2372
384 x 384 1.2143
768 x 768 1.2254

4.2.3. A Dense Homogenized Permeability Tensor

To demonstrate that an isotropic inhomogeneity may lead to a dense tensor, Bourga
considered the L-shaped region shown in Fig. 13, with the permeability tensor

1-1, V(X,y)GQo
KX, y) = .
(X y) {10 I, V(X, y) e Q1

The asymptotic computation of Bourgat gives,

- 1915 —0.101 2016 0
(@asy _ _ T
K= {—0.101 1915} - Q[ 0 1.814] Q-

20f ' ' ' o E
1.8 o Arithmetic 3
1k o Harmonic ’ ]
' s v Black Box ]
1.4+ A Asymptotic ]

0.0 L Ll | ! s | L { n L s 1 2 1

107 107 1072 107! 10° 10" 102 10° 10*
A

FIG. 12. Dependence of homogenized diffusivities on the relative diffusivity
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5/6

3/6

1/6

0

0 6 3/6 56 1

FIG. 13. The homogenization of an L-shaped inhomogeneity leads to a dense tensor.

where the matrix of eigenvectof3 is given by

@l )

Q defines the principal axes of diffusion, in this case a rotation &f 45

Black box homogenization also gives a full tensor; specifically, for ax7888 fine grid
(Table 5) we have

- 1.959 —0.153 2113 0
(bb) __ _ T
K= 0153 1959} - Q[ 0 1.806] Q-

Moreover, we remarkably obtain the exact principal axes of diffusion in this case. The c
error is the scaling in each of these directions, approximately 5% and 0.4%, respectiv

5. CONCLUSIONS

An efficient and accurate homogenization procedure suitable for a broad class of ir
scale diffusion problems is essential and yet was previously unavailable. To this end

TABLE 5
A Sequence of Homogenized Permeability Tensors Ob-
tained with Progressively Finer Meshes for the L-Shaped
Inhomogeneity Shown in Fig. 13

Fine grid K =Ky Koy
12x 12 1.4972 —0.08527
24 x 24 2.3766 —0.17604
48 x 48 1.8280 —0.14011
96 x 96 2.0515 —0.15881
192x 192 1.9316 —0.15094
384 x 384 1.9887 —0.15519

768 x 768 1.9594 —0.15317
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hypothesized that the robustness of Dendy’s black box multigrid codes [24, 25] implied
the corresponding coarse-grid operators were accurate approximations of the true cc
scale operators and, therefore, that the operator-induced coarsening intrinsically pro
an efficient discrete multilevel homogenization procedure. Thus, we developed a |
expression (Theorem 2.1, Eq. (8)) which through Algorithm 3.1 defines the black |
multigrid approximation of the homogenized permeability tensor.

In the numerical tests of Section 4.2 we compared this new multilevel homogeniza
procedure with several examples from Bourgat's [20] numerical study. The results of tt
tests are very encouraging. In particular, the multigrid homogenized permeability ter
displayed the correct relative dependence on the shape of the internal inhomogene
dependence missed entirely by the simple averages. The new technique also demon:
an impressive accuracy over eight orders of magnitude in the relative diffusivity of a sq
inhomogeneity. Finally, the multigrid homogenization algorithm demonstrated that it ¢
capture coarse-scale anisotropic permeability even when it arises from a fine-scale prc
with isotropic permeability. Moreover, in this case the approximated permeability ten
defined the exact principal axes of diffusion with errors of 0.4% and 5% in the corresponc
eigenvalues. Unfortunately, this new technique is not infallible, yielding the arithmetic mq
in the case of a checkerboard problem. We feel that this is an isolated problem anc
optimistic that we can prove that this is the only pathological example. In practice, a kn
pathology such as this may be circumvented, although ultimately we hope to rectify
problem by improving the operator-induced coarsening procedure. Hence, we are ex
that research in this vein may indirectly lead to improvements in the black box code its

Based on these preliminary results, we are very interested in extending this wor
the general case. Thus, we will be investigating the potential of Algorithm 3.2 through
application to both contrived and real world diffusive modeling problems.

APPENDIX A: PROOF OF THEOREM 2.1

A.1. A Second-Order Approximation

A local flux analysis is used to construct approximations toxtfaamdy components of
the flux at the cell centeiy 1, ¥j+1) by considering the contributions from each of e
stencil weights. In particular, we write

(X) _ rE NE(x) NW(x)
fi+%,j+% - fi+%,j+% + fi+%,j+% + ]:i+%,j+% ’
() _ N NE®) NW(y)
Firpies = Fipiny T hapin T e
where]—'i(f%ﬁ% is an approximation of th&-component of the flux ai+1, Yj+1), and
E N E(x) NW(x) o . .
Firnier Firnisy and]—"H%,H% denote the contributions from their respective stenc

connections. Analogous definitions apply to theomponent.

To facilitate this analysis, we first develop the notation and coordinate systems reqt
by these unknowns. Specifically, the evaluation of the flux at the cell center requires
partial derivatives of the solution,

(pg)i+%,j+ = p2|(xi+%,yj+%)’ (p?’)i+%,j+% = p9|(x

.Y 1)’
i+3 J+§)



MULTIGRID HOMOGENIZATION 101

For a 9-point conforming bilinear finite element stengfi(x, y) and pg(x, y) are linear
functions ofy andx, respectively, whose values at the cell center are

1
(DQ)H%,H% = [hx]{(pl+1j Pij) + (Pi+1j+1 — Pij+0}

1
(pS)H%,H% = 2Ih ]{(p. ji+1— P + (Pitsj+1 — Piss )}
Thus, making the additional assumption that #aest/weststencil weights are approxi-
mately constant functions gf, we obtain

hx— —E
hy™

1_er, 4
fl+1 s @3,1' [(PX)H%,H%hX} (px) i+3 -
Similarly, assuming that theorth/southweights are approximately constant functions of
gives

N 1 _n hy —N
7:|+1 i+3 7 RS,; {(p;)w%%%hy} hx (py)|+ g+

The error associated with these expression®(s?) and, in particular, averaging the
stencil coefficients is a second-order approximation. Averaging the fluxes directly wc
also provide arD(h?) approximation and differs from the above expressions only in ti
higher order terms,

[(SI’.,\IJ' - Slil.j)] (pr)iJr%,H% hx hy,

N

[(SEJ - SII,EH-I)} (pgy)i_,.%,j_‘_%hx hy,

iR

respectively.

To extend this approach to the diagonal stencil weights, we introduce two rotated ¢
dinate systems. The first, with coordinatés n1) is shown in Fig. 14a and hgs aligned
with the northeastdiagonal of the cell. Thus, it has been rotated counterclockwise by
angle,p = tarrt(hy/hx) and is related tox, y) by the simple transformation,

X=Xy | _ [cog0) —sin@®) | | &
lY—YH;] a [sin(e) cos) ] [ J ' (16)

The second coordinate systet&, 12), shown in Fig. 14b, has been rotated counterclocl

wise by (/2 — 0) to align ), with the northwestdiagonal of the cell. The coordinates
(&2, n2) are related toX, y) by the simple transformation,

X—=X1 sin(@) —cogd) | | &
2| = . . 17
[y—yHJ {cos(@) sin(9) } {nz} )

These coordinate systems are identicabif= hy.
To approximate the fluxes, we first define the derivatives along the cell diagonals,

(pg)w%,n% = p§1|(Xi+%,yj+%)’ (psz)w%,u
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(a) (b)

FIG. 14. Rotated coordinate systems: (&), n,) has¢, aligned with thenortheastiagonal of the cell, while
(b) (&2, n2) hasnm, aligned with thenorthwestdiagonal.

For a piecewise bilinear basis we have

h 1
(p§1)i+%,j+% = h—gl(pi-s-l,j-rl - pi,j),

1
h
(pnl)i+%,j+% = hT?z(pi.jJrl — Pit1j)-

The cosine foreshortening of the interface as seen along the cell diagonals is depicte
all four cases, in Fig. 15. Therefore, from Fig. 15 we have

NEW S |:(p?1)i+%,j+%h€l:|

i+%’j+% - [hycoqe)] (gl‘x)
hx
hyCOié’)S [ Oge)(px)wl +1+S|n(0)(py)|+1j+1}
hx h )
= W NJE(pX)i+%,j+% + S',\‘jE(py)i+%,j+% s
and similarly,
FNWOO ’\Jr\ivl {(pgz)i%,”%hnz}( )
RSN [hycos)] N2
= e rosp S [—008(9)(ph)- L +sin@ (ph). L, 1}
hycos(e) +1,j xJi+d,j+1 y)itdj+3

S+1J(px)|+ J+ SHJ(py) i+
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. y .
T}: 3: hy cos(9) e . hy cos(9) i t,
\'\.__
\\‘.\
_____ -X \ “\ -x
(a) (b)

. ¥ . — hxsin(8) hxsin(@) — . ¥ X
: /.///\ 1 e é[ 112 / ~ |

() (d)

FIG. 15. Cosine foreshortening.

The evaluation o7, ;¥ , andF\ ), follows analogously to yield

+3.i+3 +3.0+3
(X)
Fivsivs
(y)
Firhivg
hx f<E NE NW NE NW h
_ h*;{s,j"‘sl,j + 941 (8 - 9iY) (px)i+%,j+%
B NE NW hy r&eN NE NW AT
(S - S4Y)) i, + 8+ 94 (py)'+%~l+%

Direct comparison with the definition of anisotropic diffusion yields the permeability ten:
Kitsi+s given in Eq. (8). ]

A.2. An Exact Expression

We first assume that the permeability tensor is constafitémd is written

X oY)

KX y) =K =~Kiigjrg = S A%

3
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so that the bilinear conforming finite element stencil weights are given by

S — 2Ny o0 _ Xy
J3 hx 3hy
aNJ_ — _}E’ (X,X) 2 hX;C(y y),
: 3hx 3 hy
1 hy 1 hx 1
NE _ JCoxX 20y 4 Ty
S0 6 hx *5 6hy + 2
1 hy 1 hx 1
NW _ JCXX) ey Ty
S 6 hx 6hy 2
Substitution into Eq. (8) immediately givef?,%“% = /CH%,H%. [

APPENDIX B: INTERPOLATION

The order of the transfer operators in an efficient multigrid method must satisfy
well-known inequality

mi + my > 2m,

wherem; andm;, are the order of the interpolation and the restriction, respectively, a
2m is the order of the PDE (see, e.g., [30, 31, 32]). If this condition is satisfied tf
variational coarsening generates coarse-grid operators that are relatively consistent
and typically consistent with the original PDE. However, if this condition is not satisfie
then an inconsistent coarse-grid discretization may arise and the multigrid method
be suboptimal. This result is demonstrated by de Zeeuw [33] for a constant coeffic
second-order PDE.

Unfortunately, the situation for Eqg. (1) with highly discontinuous permeability is mo
complicated because the regularity of the solution depends on the fine-scale structure
permeability. Specifically, the gradient of the pressure may be discontinuous, in general
it is the continuity of the normal flux (velocity) that must be preserved in the interpolatic
In the following discussion we derive Dendy’s [24] operator-induced interpolation a
comment on its order of accuracy.

B.1. Fine Grid Stencil

In analogy with Appendix A, we adopt a flux-based analysis to derive Dendy’s opera
induced interpolation [24]. Specifically, consider a fine-grid point that is embedded i
horizontal coarse-grid line (Fig. 16a). In this case we approximately enforce the contin
of the normal flux through the vertical face shown in Fig. 16. To simplify the notation \
use {, j) to index vertices andk(I) to index cells(i.e., k =i + % =]+ %).

To derive the interpolation we consider preserving the continuity of the normal flux i
weak or integral sense,

Yi+1 Yi+1
lim / (F-x)dy = Iim+/ (F-x)dy. (18)

X— X~ —>X ;
Yj-1 Yj-1

The contributions from each of the neighboring cells are defined by

+ Yi+1
(F X)) = lim / (F -x)dy, (19)
X—x+t Y1
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(k1) (k1)
coarse-grid coarse-grid
—a @ " - » - »—
(i,f) line (i.j) line
(a) (b)

FIG. 16. (a) Interpolate the fine-grid point®,” from the coarse-grid points,&.” (b) The objective is to
preserve the continuity of the normal flux through the vertical interface @e., the shaded region).

with analogous definitions for the other cells. The continuity condition equation (18) «
now be written in the form

F 081, 4 (F 08y 1= (F X0+ (F 08 1. (20)

Following the approach of Appendix A we decompose each term in Eq. (20) into
stencil-based contributions; for example,

(f . X)Eij = hM [JTkF] + fk’\jE(X) + kaJE(X)] . (21)

Itis our objective to construct the interpolation weights from a single stencil. Thus we he

1
Fa = W{Si (P hx]} (22a)

o 1
Fa = W{S',\IJE[(pX):(:J!th} + S [Py hvi]} (22b)

v 1
For® = W{S,SJE[(px)ikj}th] + SiE[(Py)ikj}hW]}- (22c)

Substitution of Egs. (22) into Eq. (20), along with analogous expressions for the other te
yields a stencil-based continuity condition,

(8 + S5+ 8% [0 M e+ (por T hx ]
+ (877 = S5 [yt + (g
= (85 + S5+ ) [Pl e+ (Pl

+(SNF = S5 [(pi hyt + (py)fthyia]. (23)
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Unfortunately, incorporating thg-derivative into the interpolation is precluded by the
desire to limit all coarse-grid operators to be 9-point operators. Thus, we assume that
terms are small, and hence, neglecting them we obtain

(S + S+ 82 [P0l + (Pol ™ X

= (85 + SN+ SO [P + (Pl T o
Substitution of the one-sided differences
(P05 = (pol) = (pob 2 = &(pihﬂ, i = Py)
(PO = (PO = (Pl = ﬁ(pﬂi —ple)
into Eq. (24) yields
(8 + 85+ 8" + 7"+ SYF + S ol 5

= (N + S+ 8¥") Py + (S5 + 9 + S°F) Pl

Recalling thatSf?j = Z*#O §'; and switching to Dendy’s cell-based symmetric notatio
reveals that Eq. (25) prescribes interpolation weights that are identical to those in Eq.

B.2. The Order of Interpolation

To investigate the order of operator-induced interpolation we examine the approxima
of the continuity condition that results from a specific fine-grid stencil. Specifically, consi
a conforming bilinear finite element discretization of Eqg. (1) with a piecewise const
diagonal permeability tensor

’C|(<X|’X) 0
KX, y) =K = 0 ICQ’(”]

for all (x,y) € Fx . Substitution of the stencil weights into Eq. (24) yields the continuit
condition

{’C&)l(,)myi + ’C:()ii)lfth—l}(px)ixj = {Kl((ﬁ’x)hy + ’C|(<>,(|'i)1hM—1}(px)ix,ij (26)

with first-order one-sided difference approximationg pgf);("j and(px)ﬁ.

This flux continuity condition incorporates an arithmetic treatmer€ & (x, y) in the
y-direction (i.e., parallel to the vertical interface) and enforces the continuity of the norr
flux across the vertical interface. Therefore, if tbeal structure offIC(x, y) is either a
horizontal or vertical interface the interpolation is second order. Unfortunately, estima
the order of interpolation for more general interface configurations is extremely diffic
because the regularity of the solution depends on this property of the permeability.
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